

Welcome to bjec’s documentation!

Contents:

	Getting Started
	Example

	Command Line Interface

	Library Use

	Runnables
	Job

	Build

	Concepts
	Constructor

	Configuration File

	API Reference
	bjec.build

	bjec.cli

	bjec.collector

	bjec.config

	bjec.generator

	bjec.job

	bjec.master

	bjec.params

	bjec.processor

	bjec.runner

	bjec.utils

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Example

Command Line Interface

Library Use

Runnables

Job

Build

Concepts

Constructor

Constructor Function

Configuration Method

Configuration File

API Reference

bjec.build

	
class bjec.build.Build(constructor_func, depends=None)

	
	
class Constructor(obj)

	
	
builder(builder)

	

	
dependencies

	

	
source(source)

	

	
class bjec.build.Builder

	
	
build()

	Must be implemented by inheriting classes.

	
last_built()

	Must be implemented by inheriting classes.

	
class bjec.build.ChangeInfo(status, last_changed)

	Comprises information about the state of changes of a Source.

A ChangeInfo-like object is returned by Source.scan().

	
status

	Conveys any knowledge the Source has about
whether changes have taken place.
A Source may set status to CHANGED, when it changed its
files directly, e.g. pulled from a remote source, etc.
UNCHANGED may be set, when a version management system did not
perform an update, UNKNOWN is the general case.

	Type

	ChangeInfo.Status

	
last_changed

	Date and time of the last change
which took place in the Source. Generally only changes to a file’s
content are regarded as change.

	Type

	datetime.datetime

	
class Status

	An enumeration.

	
CHANGED = 2

	

	
UNCHANGED = 1

	

	
UNKNOWN = 0

	

	
class bjec.build.GitRepo(url, branch='master')

	docstring for GitRepo

	Parameters

	
	url (str) – Remote URL of the repository

	branch (str) – Branch of the remote repository to use, default: “master”

	Configuration Options:

	
	
	repos_path: Path to local directory which repositories are

	downloaded to, defaults to default_repos_path

	identity_file: Path to an (SSH) identity file for authentication

	
	identity_content: Content of an (SSH) identity file for

	authentication

	
default_repos_path = '~/bjec/repos'

	See configuration option repos_path.

	
local_path()

	Return the (base) path to the source on the local file system.

Must be implemented by inheriting classes.

	Returns

	The absolute path to the Source’s local base directory.

	Return type

	str

	
scan()

	Perform a scan over the source set and return change info.

Must be implemented by inheriting classes.

	Returns

	An object adhering to the ChangeInfo documentation.

	Return type

	ChangeInfo

	
class bjec.build.Local(path)

	docstring for Local

	
local_path()

	Return the (base) path to the source on the local file system.

Must be implemented by inheriting classes.

	Returns

	The absolute path to the Source’s local base directory.

	Return type

	str

	
scan()

	Perform a scan over the source set and return change info.

Must be implemented by inheriting classes.

	Returns

	An object adhering to the ChangeInfo documentation.

	Return type

	ChangeInfo

	
class bjec.build.Make(path, target=None, creates=None, clean_first=False, clean_target=None)

	docstring for Make

	Parameters

	
	path (str) – Path to the directory containing the Makefile

	target (str or list of str, optional) – make target(s) to execute

	creates (str or list of str, optional) – File path(s) created by make,
may be absolute (starting with “/”) or relative to path

	clean_first (bool, optional) – When True, call clean() before starting
to build (clean_target must be given)

	clean_target (str or list of str, optional) – make target(s) to execute
for cleaning

	Configuration Options:

	
	environment: Map of environment variables passed to the make call

	
build()

	Must be implemented by inheriting classes.

	
clean()

	

	
last_built()

	
	Returns

	The earliest mtime of any file in creates.

If creates is None, empty or None of the files exist,
datetime.datetime.min (aware, i.e. with added tzinfo) is returned.

	Return type

	datetime.datetime

	
result()

	

	
class bjec.build.Source

	
	
local_path()

	Return the (base) path to the source on the local file system.

Must be implemented by inheriting classes.

	Returns

	The absolute path to the Source’s local base directory.

	Return type

	str

	
scan()

	Perform a scan over the source set and return change info.

Must be implemented by inheriting classes.

	Returns

	An object adhering to the ChangeInfo documentation.

	Return type

	ChangeInfo

	
bjec.build.build(depends=None, master=None)

	

bjec.cli

	
bjec.cli.main()

	

	
bjec.cli.run(path, name, config=None)

	

bjec.collector

	
class bjec.collector.CSV(file_path=None, tempfile_class=<function TemporaryFile>, close_files=True, lock_class=<built-in function allocate_lock>, input_encoding='utf-8', output_encoding='utf-8', input_csv_args=None, output_csv_args=None, before_all=None, after_all=None, before_row=None, after_row=None, before=None, after=None)

	Collector concatenating CSV output (from file-like objects).

The Collector expects file-like objects, those are read as CSV files.
Each row is appended to an output file.

	Parameters

	
	file_path (str) – The file path to opened as the aggregate file. If
None a temporary file will be created according to
tempfile_class.

	tempfile_class (class object or function) – The class used to create a
temporary file as the aggregate file. Only used when file_path is
set to None. Please note that a function may be passed in, e.g.
thus enabling use of functools.partial to set max_size for
tempfile.SpooledTemporaryFile.

	close_files (bool) – If set to True, add() will attempt to close
the output argument (by calling close() on it), ignoring any
AttributeError (i.e. close() not defined).

	lock_class (class object or function) – The class used to create a lock
object.

	input_encoding (str, optional) – Input encoding (for output passed into
add()). Defaults to "utf-8".

	output_encoding (str, optional) – Output encoding (for the aggregate
file). Defaults to "utf-8".

	input_csv_args (dict, optional) – kwargs passed to the csv.reader()
call used to create a reader for CSV input (from output passed
into add()).

	output_csv_args (dict, optional) – kwargs passed to the csv.writer()
call used to create a writer for CSV output (to the aggregate file).

	before_all (iterable of iterables, optional) – Is inserted at the
beginning of the output file. before_all is interpreted as rows,
each item in one row is written as column content.

	after_all (iterable of iterables, optional) – Is appended to the end of
the output file. after_all is interpreted as rows, each item in
one row is written as column content.

	before (iterable of iterables, optional) – Is inserted before each item’s
data, which is handed to the Collector using add(). before is
interpreted as rows, each item in one row is written as column
content.

	after (iterable of iterables, optional) – Is appended to each item’s
data, which is handed to the Collector using add(). after is
interpreted as rows, each item in one row is written as column
content.

	before_row (iterable, optional) – Is inserted at the beginning of each
row. Each item of before_row is written as column content.

	after_row (iterable, optional) – Is appended to each row. Each item of
after_row is written as column content.

	
add(params, output)

	Adds the output of a run to the collector.

Must be implemented by inheriting classes.

Inheriting classes can specify whether add() may be called after
aggregate() has been called.
Inheriting classes must ensure, that add() is thread-safe.

	Parameters

	
	params (dict) – The parameters o the run.

	output (any) – Output of the run. What kind of object is passed in
will depend on the Runner.

	
aggregate()

	Aggregates and returns all the outputs collected.

Must be implemented by inheriting classes.

Inheriting classes can specify whether aggregate may be called
multiple times.
Inheriting classes may add optional parameters.

	Returns

	Returns the aggregate of all outputs added to the Collector.

	Return type

	any

	
class bjec.collector.Collector

	docstring for Collector

	
add(params, output)

	Adds the output of a run to the collector.

Must be implemented by inheriting classes.

Inheriting classes can specify whether add() may be called after
aggregate() has been called.
Inheriting classes must ensure, that add() is thread-safe.

	Parameters

	
	params (dict) – The parameters o the run.

	output (any) – Output of the run. What kind of object is passed in
will depend on the Runner.

	
aggregate()

	Aggregates and returns all the outputs collected.

Must be implemented by inheriting classes.

Inheriting classes can specify whether aggregate may be called
multiple times.
Inheriting classes may add optional parameters.

	Returns

	Returns the aggregate of all outputs added to the Collector.

	Return type

	any

	
class bjec.collector.Concatenate(file_path=None, tempfile_class=<function TemporaryFile>, close_files=True, lock_class=<built-in function allocate_lock>, before_all=None, after_all=None, before=None, after=None)

	Collector concatenating output (file-like objects) into a new file.

	Parameters

	
	file_path (str) – The file path to opened as the aggregate file. If
None a temporary file will be created according to
tempfile_class.

	tempfile_class (class object or function) – The class used to create a
temporary file as the aggregate file. Only used when file_path is
set to None. Please note that a function may be passed in, e.g.
thus enabling use of functools.partial to set max_size for
tempfile.SpooledTemporaryFile.

	close_files (bool) – If set to True, add() will attempt to close
the output argument (by calling close() on it), ignoring any
AttributeError (i.e. close() not defined).

	lock_class (class object or function) – The class used to create a lock
object.

	
add(params, output)

	Adds the output of a run to the collector.

Must be implemented by inheriting classes.

Inheriting classes can specify whether add() may be called after
aggregate() has been called.
Inheriting classes must ensure, that add() is thread-safe.

	Parameters

	
	params (dict) – The parameters o the run.

	output (any) – Output of the run. What kind of object is passed in
will depend on the Runner.

	
aggregate()

	Returns the file object containing the aggregated output.

	Returns

	The file object containing the aggregated output,
the position in the file is reset to 0 before returning.
The caller has the responsible to close() the returned
file-like object.

	Return type

	file-like object

	
class bjec.collector.Demux(watch, factory, lock_class=<built-in function allocate_lock>)

	Demux de-multiplexes output, distributing it to different Collectors.

	Parameters

	
	watch (list of str) – List of parameters to watch for: For each distinct
combination of values in this list, a collector is maintained.

	factory (function) – Called to create a new collector. A dict of
parameters is passed as the only argument, containing only those
parameters specified in watch.

	lock_class (class object or function) – The class used to create a lock
object.

	
add(params, output)

	

	
aggregate()

	

bjec.config

	
class bjec.config.Config(namespace='bjec')

	docstring for Config

	
read_yaml(path)

	

	
class bjec.config.ModuleConfig(config, key_parts)

	docstring for ModuleConfig

	
get(key, default=None)

	

bjec.generator

	
class bjec.generator.Chain(*generators)

	

	
class bjec.generator.Combine(*generators)

	

	
class bjec.generator.Generator

	Generator represents a generator for input parameters of tasks.

Every parameter set produced by the generator represents the input for a
a task.

The Generator interface basically is a standard python iterable, i.e.
the __iter__ method has to be defined and return an iterator.

	
class bjec.generator.List(iterable)

	

	
class bjec.generator.Product(**params)

	docstring for Product

	
class bjec.generator.Repeat(params, n)

	

	
class bjec.generator.RepeatG(generator, n)

	

bjec.job

	
class bjec.job.Job(constructor_func, depends=None)

	
	
class Constructor(obj)

	
	
after(*after_func)

	

	
collector(collector)

	

	
generator(generator)

	

	
processor(processor)

	

	
runner(runner)

	

	
run()

	Must be implemented by inheriting classes.

	
bjec.job.job(depends=None, master=None)

	

bjec.master

	
class bjec.master.Artefactor

	docstring for Artefactor

	
class Constructor

	
	
artefact(**kwargs)

	

	
artefact(**kwargs)

	

	
w_run()

	

	
class bjec.master.Constructible

	docstring for Constructible

	
class Constructor(obj)

	

	
construct()

	

	
constructed()

	

	
constructor_func(constructor_func)

	

	
w_run()

	

	
class bjec.master.Dependency

	docstring for Dependency

Dependency has two different Constructor variants:
SetUpConstructor allows adding dependencies to the object, while
ResolveConstructor makes resolved dependencies available with its
dependencies attribute.

	
class ResolveConstructor

	
	
dependencies

	

	
class SetUpConstructor

	
	
depends(*args)

	

	
depends(*args)

	

	
fulfill()

	Fulfills this dependency.

May be implemented by inheriting classes, but defaults to calling
self.run(). In this case however, self.run() has to ensure
_fulfill_dependencies() is run.

Should the object only be run once, the following can be inserted at
the beginning of this method’s implementation (or self.run()):

if self.fulfilled():
 return

	
fulfilled()

	

	
w_run()

	

	
class bjec.master.Master

	
	
register(obj, func, secondary=None)

	

	
class bjec.master.Registerable

	
	
registered_with(master)

	

	
class bjec.master.Runnable

	
	
run()

	Must be implemented by inheriting classes.

	
class bjec.master.WrapperRun

	docstring for WrapperRun

	
run()

	

	
w_run()

	

bjec.params

	
class bjec.params.Factory(cls, *args, **kwargs)

	Factory for objects with ParamsEvaluable arguments.

Example

Factory(Concatenate, file_path=Join("out.", P("n"), ".data"))

	Parameters

	
	cls (class object) –

	*args (arbitrary, ParamsEvaluable) – Variable arguments passed to the
class constructor. May contain ParamsEvaluable elements.

	**kwargs (arbitrary, ParamsEvaluable) – Keyword arguments passed to the
class constructor. May contain ParamsEvaluable values.

	
evaluate(params)

	

	
class bjec.params.Function(func)

	Wrapper for functions.

Example

Function(lambda p: p["alpha"] / p["beta"])

	Parameters

	func (function) – Function to be called on evaluation. The parameters
are passed as the only argument.

	
evaluate(params)

	

	
class bjec.params.Join(*args, sep='')

	String / Bytes Join for lists containing ParamsEvaluable objects.

The type of output is determined by the type of the sep argument.

If the output should be a str, str(.) will be called on each list
element (in *args). If the output should be of type bytes, the user
has to ensure that each of the list elements are of bytes type and that
ParamsEvaluable(.) returns a bytes object.

Example

Join("out.", P("n"), ".csv")

	Parameters

	
	*args (object supporting str(), ParamsEvaluable or bytes) – Elements to
join, may be instances of ParamsEvaluable classes. If the output
type is str, str() is applied to every element before
joining.

	sep (str or bytes, optional) – Separator used to join elements of
*args. Must have the type of the output, i.e. if the output should
be of a bytes type, sep must be as well. Defaults to "".

	
evaluate(params)

	

	
class bjec.params.P(key, f=None)

	Wrapper to allow intuitive parameter inclusion.

P instances represent a ‘future’ parameter value, every instance contains
the key of the parameter in the params dict.
Each instance evaluates to the corresponding parameter’s value.

Other modules may accept P objects or lists containing P objects.
These are then evaluated for every parameter set.

Example

ProcessArgs("--offset", P("offset"))

	Parameters

	
	key (str) – Parameter (key of the parameter in the params) dict.

	f (None or function, optional) – If not None, f is applied to the
value of params[key] and the result is returned.

	
evaluate(params)

	

	
classmethod evaluate_list(l, params)

	

	
class bjec.params.ParamsEvaluable

	
	
evaluate(params)

	

	
bjec.params.evaluate(obj, params)

	

bjec.processor

	
class bjec.processor.Inline

	
	
process()

	Process all parameter sets produced by the generator.

Must be implemented by inheriting classes.

	
class bjec.processor.Processor

	docstring for Processor

A Processor is responsible for the task execution pipeline, that is
fetching parameter sets from a Generator, handing them to a Runner
and passing the Runner’s output to a Collector.
Meanwhile the Processor has to manage its Runners' lifecycle.

	
collector(collector)

	

	
generator(generator)

	

	
process()

	Process all parameter sets produced by the generator.

Must be implemented by inheriting classes.

	
runner_factory(runner_factory)

	

	
class bjec.processor.Threading(n)

	docstring for Threading

	Parameters

	n (int) – Number of threads to be run. If <= 0, the configuration
option of the same name is used instead.

	Configuration Options:

	
	
	n: Number of threads to run, it is used when n passed to the

	constructor is <= 0. Defaults to 1.

	
process()

	Process all parameter sets produced by the generator.

Must be implemented by inheriting classes.

bjec.runner

	
class bjec.runner.InputMethod

	
	
class Wrapper(obj, params, args, kwargs)

	

	
wrapper(params, args, kwargs)

	

	
class bjec.runner.OutputMethod

	
	
class Wrapper(obj, params, args, kwargs)

	
	
output()

	Returns the output of the subprocess.

Must be implemented by inheriting classes.

Will be called by SubprocessRunner after the subprocess.run()
call has finished.

	
wrapper(params, args, kwargs)

	

	
class bjec.runner.ProcessArgs(*args)

	docstring for ProcessArgs

	Parameters

	*args (str, ParamsEvaluable) – Arguments to execute the subprocess with.
Supports ParamsEvaluable arguments.

	
class Wrapper(obj, params, args, kwargs)

	

	
class bjec.runner.Runner

	docstring for Runner

	
classmethod factory(*args, **kwargs)

	Creates a factory for properly set-up Runner objects.

Here, a factory is a function taking no parameters and returning a new
instance of a Runner (subclass).

May be implemented by inheriting classes.
The default implementation will create a new object of the current
class with the exact same parameters as passed into the factory
method.

	Returns

	Calling this function will return a new Runner
instance with the parameters passed into the factory method.

	Return type

	function

	
run(params)

	run is called to have the Runner execute a task.

Must be implemented by inheriting classes.

The parameter params consists of the task’s parameters, its type will
depend on the Runner’s configuration.
run() must return only after processing completed.
Its return type will be depend on the Runner’s configuration.

	
start()

	start is called before the Runner is used for the first time.

May be implemented by inheriting classes (but must be defined).

If starting is an asynchronous process, start() must return after this
process completed.

	
stop()

	stop is called when the Runner is no longer needed.

May be implemented by inheriting classes (but must be defined).

If stopping is an asynchronous process, stop() must return after this
process completed.

	
class bjec.runner.Stdout(spool=0, named=False, stdout=True, stderr=False)

	docstring for Stdout

	Parameters

	
	spool (int, default 0) – If spool is greater 0, the stdout will be
stored in a spooled file in memory until its size exceeds
spool.

	named (bool, default False) – If True, the output file will be located
on the file system with its path in the its name attribute.
Implies spool = 0 if set to True.

	stdout (bool, default True) – If True, the stdout of the subprocess will
be included in the output file.

	stderr (bool, default False) – If True, the stderr of the subprocess
will be included in the output file

	
class Wrapper(*args, **kwargs)

	
	
output()

	Returns the output of the subprocess.

Must be implemented by inheriting classes.

Will be called by SubprocessRunner after the subprocess.run()
call has finished.

	
class bjec.runner.SubprocessRunner(*args, input=None, output=None, **kwargs)

	docstring for SubprocessRunner

	
class Wrapper(obj, params, args, kwargs)

	Wrapper is a helper class used by both input and output methods.

Wrapper is used as a context manager, the subprocess.run() is wrapped
in it. Input and output methods can therefore use its __enter__
methods to modify the args and kwargs passed to the
subprocess.run() call.

For details also check out the InputMethod and OutputMethod
classes as well as the concrete implementations of the both.

	
obj

	Arbitrary object, meant to contain the instance of
of the Wrapper’s method class, thus enabling access to its
members.

	Type

	object

	
params

	The parameter set serving as the input of the
current run / task.

	Type

	dict

	
args

	The args list passed to subprocess.run(). May be
modified.

	Type

	list

	
kwargs

	The kwargs list passed to subprocess.run(). May
be modified.

	Type

	dict

	
run(params)

	run is called to have the Runner execute a task.

Must be implemented by inheriting classes.

The parameter params consists of the task’s parameters, its type will
depend on the Runner’s configuration.
run() must return only after processing completed.
Its return type will be depend on the Runner’s configuration.

bjec.utils

	
bjec.utils.listify(obj, none_empty=False)

	listify turns obj into an iterable.

	Returns

	obj is simply returned, if it already is an iterable.
Otherwise - or if it a string - it is wrapped in a list.
If none_empty is set to True, an empty list is returned, if obj
is None.

	
bjec.utils.max_datetime = datetime.datetime(9999, 12, 31, 23, 59, 59, 999999, tzinfo=datetime.timezone.utc)

	Maximum representable datetime with timezone (“aware”) set to UTC.

	
bjec.utils.min_datetime = datetime.datetime(1, 1, 1, 0, 0, tzinfo=datetime.timezone.utc)

	Minimum representable datetime with timezone (“aware”) set to UTC.

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 bjec	

 	
 	
 bjec.build	

 	
 	
 bjec.cli	

 	
 	
 bjec.collector	

 	
 	
 bjec.config	

 	
 	
 bjec.generator	

 	
 	
 bjec.job	

 	
 	
 bjec.master	

 	
 	
 bjec.params	

 	
 	
 bjec.processor	

 	
 	
 bjec.runner	

 	
 	
 bjec.utils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | K
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	add() (bjec.collector.Collector method)

 	(bjec.collector.CSV method)

 	(bjec.collector.Concatenate method)

 	(bjec.collector.Demux method)

 	after() (bjec.job.Job.Constructor method)

 	aggregate() (bjec.collector.Collector method)

 	(bjec.collector.CSV method)

 	(bjec.collector.Concatenate method)

 	(bjec.collector.Demux method)

 	
 	args (bjec.runner.SubprocessRunner.Wrapper attribute)

 	artefact() (bjec.master.Artefactor method)

 	(bjec.master.Artefactor.Constructor method)

 	Artefactor (class in bjec.master)

 	Artefactor.Constructor (class in bjec.master)

B

 	
 	bjec.build (module)

 	bjec.cli (module)

 	bjec.collector (module)

 	bjec.config (module)

 	bjec.generator (module)

 	bjec.job (module)

 	bjec.master (module)

 	bjec.params (module)

 	bjec.processor (module)

 	
 	bjec.runner (module)

 	bjec.utils (module)

 	Build (class in bjec.build)

 	build() (bjec.build.Builder method)

 	(bjec.build.Make method)

 	(in module bjec.build)

 	Build.Constructor (class in bjec.build)

 	Builder (class in bjec.build)

 	builder() (bjec.build.Build.Constructor method)

C

 	
 	Chain (class in bjec.generator)

 	CHANGED (bjec.build.ChangeInfo.Status attribute)

 	ChangeInfo (class in bjec.build)

 	ChangeInfo.Status (class in bjec.build)

 	clean() (bjec.build.Make method)

 	Collector (class in bjec.collector)

 	collector() (bjec.job.Job.Constructor method)

 	(bjec.processor.Processor method)

 	
 	Combine (class in bjec.generator)

 	Concatenate (class in bjec.collector)

 	Config (class in bjec.config)

 	construct() (bjec.master.Constructible method)

 	constructed() (bjec.master.Constructible method)

 	Constructible (class in bjec.master)

 	Constructible.Constructor (class in bjec.master)

 	constructor_func() (bjec.master.Constructible method)

 	CSV (class in bjec.collector)

D

 	
 	default_repos_path (bjec.build.GitRepo attribute)

 	Demux (class in bjec.collector)

 	dependencies (bjec.build.Build.Constructor attribute)

 	(bjec.master.Dependency.ResolveConstructor attribute)

 	
 	Dependency (class in bjec.master)

 	Dependency.ResolveConstructor (class in bjec.master)

 	Dependency.SetUpConstructor (class in bjec.master)

 	depends() (bjec.master.Dependency method)

 	(bjec.master.Dependency.SetUpConstructor method)

E

 	
 	evaluate() (bjec.params.Factory method)

 	(bjec.params.Function method)

 	(bjec.params.Join method)

 	(bjec.params.P method)

 	(bjec.params.ParamsEvaluable method)

 	(in module bjec.params)

 	
 	evaluate_list() (bjec.params.P class method)

F

 	
 	Factory (class in bjec.params)

 	factory() (bjec.runner.Runner class method)

 	
 	fulfill() (bjec.master.Dependency method)

 	fulfilled() (bjec.master.Dependency method)

 	Function (class in bjec.params)

G

 	
 	Generator (class in bjec.generator)

 	generator() (bjec.job.Job.Constructor method)

 	(bjec.processor.Processor method)

 	
 	get() (bjec.config.ModuleConfig method)

 	GitRepo (class in bjec.build)

I

 	
 	Inline (class in bjec.processor)

 	
 	InputMethod (class in bjec.runner)

 	InputMethod.Wrapper (class in bjec.runner)

J

 	
 	Job (class in bjec.job)

 	job() (in module bjec.job)

 	
 	Job.Constructor (class in bjec.job)

 	Join (class in bjec.params)

K

 	
 	kwargs (bjec.runner.SubprocessRunner.Wrapper attribute)

L

 	
 	last_built() (bjec.build.Builder method)

 	(bjec.build.Make method)

 	last_changed (bjec.build.ChangeInfo attribute)

 	List (class in bjec.generator)

 	
 	listify() (in module bjec.utils)

 	Local (class in bjec.build)

 	local_path() (bjec.build.GitRepo method)

 	(bjec.build.Local method)

 	(bjec.build.Source method)

M

 	
 	main() (in module bjec.cli)

 	Make (class in bjec.build)

 	Master (class in bjec.master)

 	
 	max_datetime (in module bjec.utils)

 	min_datetime (in module bjec.utils)

 	ModuleConfig (class in bjec.config)

O

 	
 	obj (bjec.runner.SubprocessRunner.Wrapper attribute)

 	output() (bjec.runner.OutputMethod.Wrapper method)

 	(bjec.runner.Stdout.Wrapper method)

 	
 	OutputMethod (class in bjec.runner)

 	OutputMethod.Wrapper (class in bjec.runner)

P

 	
 	P (class in bjec.params)

 	params (bjec.runner.SubprocessRunner.Wrapper attribute)

 	ParamsEvaluable (class in bjec.params)

 	process() (bjec.processor.Inline method)

 	(bjec.processor.Processor method)

 	(bjec.processor.Threading method)

 	
 	ProcessArgs (class in bjec.runner)

 	ProcessArgs.Wrapper (class in bjec.runner)

 	Processor (class in bjec.processor)

 	processor() (bjec.job.Job.Constructor method)

 	Product (class in bjec.generator)

R

 	
 	read_yaml() (bjec.config.Config method)

 	register() (bjec.master.Master method)

 	Registerable (class in bjec.master)

 	registered_with() (bjec.master.Registerable method)

 	Repeat (class in bjec.generator)

 	RepeatG (class in bjec.generator)

 	result() (bjec.build.Make method)

 	run() (bjec.job.Job method)

 	(bjec.master.Runnable method)

 	(bjec.master.WrapperRun method)

 	(bjec.runner.Runner method)

 	(bjec.runner.SubprocessRunner method)

 	(in module bjec.cli)

 	
 	Runnable (class in bjec.master)

 	Runner (class in bjec.runner)

 	runner() (bjec.job.Job.Constructor method)

 	runner_factory() (bjec.processor.Processor method)

S

 	
 	scan() (bjec.build.GitRepo method)

 	(bjec.build.Local method)

 	(bjec.build.Source method)

 	Source (class in bjec.build)

 	source() (bjec.build.Build.Constructor method)

 	start() (bjec.runner.Runner method)

 	
 	status (bjec.build.ChangeInfo attribute)

 	Stdout (class in bjec.runner)

 	Stdout.Wrapper (class in bjec.runner)

 	stop() (bjec.runner.Runner method)

 	SubprocessRunner (class in bjec.runner)

 	SubprocessRunner.Wrapper (class in bjec.runner)

T

 	
 	Threading (class in bjec.processor)

U

 	
 	UNCHANGED (bjec.build.ChangeInfo.Status attribute)

 	
 	UNKNOWN (bjec.build.ChangeInfo.Status attribute)

W

 	
 	w_run() (bjec.master.Artefactor method)

 	(bjec.master.Constructible method)

 	(bjec.master.Dependency method)

 	(bjec.master.WrapperRun method)

 	
 	wrapper() (bjec.runner.InputMethod method)

 	(bjec.runner.OutputMethod method)

 	WrapperRun (class in bjec.master)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to bjec’s documentation!

 		
 Getting Started

 		
 Example

 		
 Command Line Interface

 		
 Library Use

 		
 Runnables

 		
 Job

 		
 Build

 		
 Concepts

 		
 Constructor

 		
 Constructor Function

 		
 Configuration Method

 		
 Configuration File

 		
 API Reference

 		
 bjec.build

 		
 bjec.cli

 		
 bjec.collector

 		
 bjec.config

 		
 bjec.generator

 		
 bjec.job

 		
 bjec.master

 		
 bjec.params

 		
 bjec.processor

 		
 bjec.runner

 		
 bjec.utils

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

